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Why Lung Nodule Segmentation is
Difficult?

Boundary Detection
Issues

Dimensional
Limitations

Nodules vary in
shape, size,  location

The edges blend in,
making it  hard to
detect clear
contours

Most ML models rely
on 2D sl ices and
single-resolut ion
data, which fai l  to
capture volumetric
and contextual
information.

CT image
interpretation is
heavi ly
dependent on
radiologist ski l l
and subjective
judgment.
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Fuzzy Nodule Boundary





Literature Survey 





Metric SBF
(Traditional CAD)

U-Net
(CNN)

Dice Similarity
Coefficient

(DSC)
66.30% 83%

Sensitivity 77.5% 84%

Specificity 82.7% 94%

False Positive
Rate (FPR) 21% 10%

Processing Time Longer Shorter

CAD vs. CNN in Lung Nodule Segmentation



Base
Model: 2D

U-Net

Encoder

Bottleneck

Decoder



Aspect 2D CNN (U-Net) 3D CNN (3D U-Net) Why 2D

Input Format
2D slices or 3-
channel images (e.g.
512×512×3)

Volumetric cubes
(e.g. 64×512×512)

Our stacked inputs
are different
resolution slices of
the same anatomical
plane, not 3D

l

Data Compatibility
Works with
heterogeneous slice
thickness inputs

Requires consistent
volumetric spacing
across all slices

RIDER dataset
includes variable
slice thickness; 2D
can handle this with
stacking.

Computational
Requirements

Low GPU memory,
faster training

High GPU memory,
longer training

2D is feasible on
standard GPUs; 3D
requires premium
hardware or strong
compute.

Use Case Fit
Ideal for per-slice or
stacked-feature
analysis

Best for continuous
spatial analysis
across slices

We’re enhancing
single slices with
stacked resolution
views, not doing
time-series 3D

l i

2D CNN vs. 3D CNN for Stacked
Multi-Resolution CT Input

2D and 3D methods both give similar accuracy scores,
and choosing the type of model depends on the

dataset, methodolgy, and type of output.



Study Aim
Develop two deep learning models for early lung cancer detection:
TransSegNet for CT scan segmentation
MinClassNet for histopathological image classification
Datasets Used
ACDC-LungHP for segmentation
Public histopathology dataset for classification
Models
TransSegNet: Transformer-based segmentation (44 patches, 4 blocks)
MinClassNet: Lightweight 7-layer CNN for classification
Features
Automatically learned (no handcrafted features)
Metrics
TransSegNet:
Accuracy: 99.62%, Mean IoU: 49.8
MinClassNet:
Accuracy: 98.39%
Key Findings
Transformers improved segmentation accuracy
CNN improved classification over older methods
Both models show strong potential for clinical lung cancer detection

https://indjst.org/articles/a-novel-3d-
multi-layer-convolutional-neural-
networks-for-lung-cancer-
segmentation-in-ct-images

Aim of the Study
Develop a 3D Multi-Layer CNN combined with K-Means pre-segmentation for
accurate and fast lung tumor segmentation in CT scans.
 Dataset
TCIA (3D CT scans)
Manual + K-Means-enhanced labeling
 Model Overview
3D-MLCNN with encoder-decoder architectures
 Features Extracted
3D texture, intensity, edge, and depth-aware features
Feature fusion at root node for better spatial context
Performance Metrics
Accuracy: 98%
Dice: 0.921
IoU: 0.842
Sensitivity: 0.894

https://indjst.org/articles/a-novel-3d-multi-layer-convolutional-neural-networks-for-lung-cancer-segmentation-in-ct-images
https://indjst.org/articles/a-novel-3d-multi-layer-convolutional-neural-networks-for-lung-cancer-segmentation-in-ct-images
https://indjst.org/articles/a-novel-3d-multi-layer-convolutional-neural-networks-for-lung-cancer-segmentation-in-ct-images
https://indjst.org/articles/a-novel-3d-multi-layer-convolutional-neural-networks-for-lung-cancer-segmentation-in-ct-images


Identifying Lung Cancer Using Image Processing
Techniques” by Disha Sharma & Gagandeep Jindal

Aim of the Study
Develop a rule-based CAD system for early lung cancer detection from
CT scans by segmenting lungs, detecting nodules, and classifying them
as benign or malignant based on handcrafted features.
Dataset
NIH/NCI LIDC (1,000 CT images)
Public, standardized, DICOM format
Techniques Used
CAD
Features Extracted
Nodule size & shape
Contrast enhancement
Calcification patterns
3D location & geometry
Performance Metrics
Sensitivity: 90%

https://www.sciencedirect.com/sci
ence/article/abs/pii/S00104825173
00926?via%3Dihub

Aim of the Study
Compare deep learning models (CNN, DBN, SDAE) vs traditional CADx systems with
handcrafted features for lung cancer diagnosis using CT images.
 Dataset Used
LIDC-IDRI
Models Used
CNN (best performance)
DBN
SDAE
Traditional CADx with handcrafted features
Features
Deep models: Learned spatial, textural, and semantic features
CADx: GLCM, wavelets, intensity, shape, calcification
AUC
CNN: 0.899 ± 0.018
CADx: 0.848 ± 0.026
 Key Findings
CNN outperforms CADx in diagnostic accuracy
Deep models capture more meaningful, generalizable features
Highlights potential of DL to replace handcrafted systems in CAD

https://www.sciencedirect.com/science/article/abs/pii/S0010482517300926?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0010482517300926?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0010482517300926?via%3Dihub


Literature Gaps 
1. Bridging the Resolution Gap

Most deep learning models (e.g., basic U-Net, TransSegNet, even
3D CNNs) operate on single-resolution input, either 2D slices or 3D
volumes of fixed thickness.
This ignores valuable anatomical detail available in multi-resolution
CT scans (e.g., RIDER dataset has 1.25mm, 2.5mm, 5mm).

2. Avoiding 3D CNN Limitations
3D CNNs (e.g., 3D-MLCNN) are accurate but require
huge computational power, aligned volumetric data, and
lots of memory.
They also perform poorly on small datasets and struggle
with variable slice thickness.

4. Volume-Inspired Accuracy with 2D-Efficiency
Shortcoming:
2D CNNs alone (e.g., the GFG and MinClassNet models) miss cross-
slice consistency (nodules appearing in several adjacent slices).

3. Addressing Label Inconsistencies
Shortcoming:
In LIDC or ACDC datasets, inter-observer
variability exists — leading to noisy masks.



Our Novel Approach
Our Innovation:
We stack multi-resolution slices (thin + thick) into a 3-
channel input (like RGB).
This allows the model to see both fine nodule edges (from
thin slices) and broader anatomical context (from thicker
slices).
Enables resolution-aware learning without needing 3D
convolutions.

Our Innovation:
We use a 2D CNN (U-Net) with stacked channels, which:
Works with unaligned or semi-aligned data.
Requires less GPU memory.
Trains faster and is easier to debug and visualize.

Our Innovation:
Our stacked slices are from the same anatomical location
at different resolutions.
This simulates a pseudo-3D awareness using 2D models
— improving boundary prediction and minimizing
misclassification of edge slices.

Our Fix:
We only use paired test-retest scans with consistent
radiologist annotations (RIDER dataset).
This minimizes label noise and gives us stable
segmentation ground truth.



Dataset – RIDER Lung CT

Contains scans from 31 patients with non-small cell lung cancer (NSCLC).
Has image position coordinates for each scan.









Input Grid
Pre Stacking
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MIP image

Masking from tumor 
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Methodology



Methodology
Dataset Used :  Rider Lung CT scans in DICOM format 
Preprocessing :

Convert DICOM fi les:  Convert DICOM to PNG format.
Al ign sl ices: Based on anatomical lung landmarks.
Noise reduction: Using denoising f i l ters.
Enhance contrast:  Histogram equal ization.

Super-Resolution Stacking :
Uti l ized vary ing sl ice thicknesses (e.g. ,  1mm, 2.5mm, 5mm).
Resampled and al igned them to a common resolut ion.
Stacked to form r icher 3D volumetric data per patient.

Segmentation Pipeline :
Objective: Identify and local ize lung nodules.
Binary masks: 1 = tumor, 0 = background.
Used segmentation as both preprocessing (to focus regions) and f inal  output (tumor detection).

Model Architecture :
Custom U-Net and Pretrained U-Net (ResNet34) from segmentation_ models l ibrary.
Encoder-decoder structure with skip connections for spatial  precision.

Loss Function :
Combined Dice Loss and Focal Loss to handle class imbalance and improve boundary accuracy.

Training Strategy :
Data augmentation: rotat ions, f l ips,  intensity shifts to boost general izat ion.
Optimizer:  Adam, LR scheduler,  and early stopping to avoid over f itt ing.

Evaluation Metrics :
Dice Coeff icient and IoU used to measure overlap between predicted masks and ground truth.



Model architecture
2 Segmentation models used:
1)Pretrained UNet with ResNet34 Encoder 
Library Used: segmentation_ models (sm)

Input shape: (256, 256, 3)
Output:  Single-channel mask (classes=1) with sigmoid activation.

2)Custom UNet from scratch
Input shape: (256, 256, 1)  (grayscale)

Downsampling Path (Encoder):
4 convolut ional blocks with increasing f i l ters (64 → 128 → 256 → 512)
Each block = 2 Conv2D + Dropout
MaxPool ing after each block

Bott leneck: 1024 f i l ters with 2 Conv2D + Dropout
Upsampling Path (Decoder):

UpSampling + Concatenate (skip connection)
Conv2D blocks with decreasing f i l ters (512 → 256 → . . . )

Output Layer:  Conv2D(1,  kernel _size=1, activation='sigmoid')



Data Pipeline
Step 1: Collect DICOM images and corresponding segmentation masks (.png)
Step 2: Pair each image with its correct mask using filename matching
Step 3: Preprocess DICOM images

Apply rescale slope/intercept
Normalize pixel intensity
Apply CLAHE (for contrast enhancement)
Clip intensity range and resize to 256×256

Step 4: Preprocess masks
Resize to 256×256
Binarize (convert to 0/1)

Step 5: Apply data augmentations
Horizontal flip
Random rotation (90°, 180°, 270°)
Random brightness adjustment

Step 6: Normalize images to [0, 1] and convert to 3 channels if needed
Step 7: Feed batches into a segmentation model (UNet / Pretrained UNet)
Step 8: Train model using combined Dice + Focal loss
Step 9: Evaluate using Dice Coefficient and IoU



Training Setup
Model: UNet 
Input Image Size: 256 × 256 (grayscale or 3-channel after conversion)
Loss Function:
 ▸ Combination of Dice Loss + Focal Loss
 ▸ Helps handle class imbalance and segmentation overlap
Optimizer:
 ▸ Adam optimizer
 ▸ Learning rate: 0.0001
Metrics:
 ▸ Dice Coefficient (overlap measure)
 ▸ IoU (Intersection over Union)
Batch Size: 4
Epochs: 50 
Augmentation:
 ▸ Horizontal flips
 ▸ Random rotations (by 90°, 180°, 270°)
 ▸ Random brightness variations
Training Pipeline:
 ▸ Custom MedicalImageDataset with paired image-mask loading
 ▸ DataLoader for efficient batching and shuffling
 ▸ Model trained using .train() mode with validation loop





Evaluation Metrics
Loss Function-

 The loss function quantifies how far the model’s
predictions are from the true tumor masks. We used a
combination of Dice Loss and Focal Loss to balance
overlap accuracy and handle difficult tumor regions.
Minimizing this loss improves overall segmentation
quality.

Dice Coefficient-
 The Dice Coefficient measures the similarity
between the predicted mask and the ground truth,
ranging from 0 (no overlap) to 1 (perfect overlap).
It is especially effective for handling class
imbalance in tumor segmentation. Higher Dice
scores indicate better model performance.

Intersection over Union (IoU)
 IoU calculates the rat io of the overlap area
to the combined area of predict ion and
ground truth masks. It  prov ides a str icter
evaluation than Dice, assessing how wel l  the
model out l ines the tumor boundaries. IoU
values closer to 1 signify more accurate
segmentations.

Threshold vs Dice Curve
 This metric helps determine the best
probabi l i ty threshold to conver t model outputs
into binary masks. By evaluating Dice scores
at different thresholds, we identify the cutoff
that maximizes segmentation accuracy. It
ensures optimal post-processing of
predict ions.



Results

Loss over Epochs:
 Training loss decreases steadi ly,  showing
the model is learning on training data.
However,  val idation loss remains high and
fluctuates, indicating poor general ization
and possible divergence.

Dice Coefficient over Epochs:
Training Dice increases wel l ,  reaching
close to 0.9, but val idation Dice stays

near zero throughout,  meaning the
model fai ls to segment correct ly on

val idation data.



 Results

IoU over Epochs:
Similar pattern—training IoU improves
signif icant ly,  but val idation IoU remains
near zero, confirming no meaningful
overlap on val idation masks.
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