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Problem Statement



Motivation

Leading type of cancer deaths in the US:

e Lung cancer causes 1.8 million deaths each year (WHO,
2023).

_e14.2 e Detection at an early stage increases survival chances
by up to 20%.

4230

e Manual segmentation = slow, inconsistent

e Need for faster, more accurate tools
!
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Why Lung Nodule Segmentation is

Difficult?

01

Boundary Detection
Issues

The edges blend in,
making it hard to
detect clear
contours

02

Dimensional
Limitations

Most ML models rely
on 2D slices and
single-resolution
data, which fail to
capture volumetric
and contextual
information.

03

Nodules vary in
shape, size, location

CT image
interpretation is
heavily
dependent on
radiologist skill
and subjective
judgment.

Fuzzy Nodule Boundary



Potential Applications

1

Clinical Decision Support

Project Goals

Accuracy

Robust segmentation with multi-
resolution CT slices

Lung Cancer Screening

Efficiency

Improve contour precision using
super-resolution techniques

Deployable CAD Tools

Robusthess

Evaluate model generalizability and
reproducibility



Literature Survey



Evolution of Lung Nodule Detection

1 Manual (Pre-1980s)

Radiologist-driven image analysis

2 CAD & Rule-Based (80s-00s)

Heuristic methods, edge detection

3 Deep Learning Today
CNNs, U-Nets, hybrid architectures



Manual Segmentation Issues CAD vs. CNN in Lung Nodule Segmentation

Inter-Observer Variability High
Consistency Low
. SBF U-Net
. : ) (Traditional CAD) (CNN)
Time Required Extensive

Dice Similarity
CAD VS ° C N N Coefficient 66.30% 83%

(DSC)

Traditional CAD Deep Learning CNNs Sensitivity 77.5% 84%
» Rule-based filters « Data-driven feature learning Specificity 82.7% 04%
» High false positives (15-40%) » Lower false positives (5-10%)

. f i . fo i False Positive 0 0
Weak generalization Strong generalization Rate (FPR) 21% 10%
e Fuzzy edges e Precise boundary detection

Processing Time Longer Shorter




Evolution of CNNs in Medical Image
Segmentation

1 2012: AlexNet

Introduced deep learning to image analysis using 2D CNNs.

Operates on individual CT slices, with low volumetric context.

2 2015: 2D U-Net

Revolutionized medical image segmentation with efficient 2D networks.

Computationally light but lacks depth information.

3 2077: 3D U-Net

Expanded filters to 3D volumes, capturing spatial context across slices.

Improved boundary consistency and anatomical accuracy.

Base
Model: 2D
U-Net

Encoder

Bottleneck

Decoder



2D CNN vs. 3D CNN for Stacked
Multi-Resolution CT Input

Aspect

2D CNN (U-Net)

3D CNN (3D U-Net)

Why 2D

Input Format

2D slices or 3-

channel images (e.g.

Volumetric cubes
(e.g. 64x512x512)

Our stacked inputs
are different
resolution slices of

Data Compatibility

512x512x3) the same anatomical
plane, not 3D
RIDER dataset
Works with Requires consistent |includes variable

heterogeneous slice
thickness inputs

volumetric spacing
across all slices

slice thickness: 2D
can handle this with
stacking.

Computational
Requirements

Low GPU memory,
faster training

High GPU memory,
longer training

2D is feasible on
standard GPUs: 3D
requires premium
hardware or strong
compute.

Use Case Fit

|deal for per-slice or
stacked-feature
analysis

Best for continuous
spatial analysis
across slices

We’re enhancing
single slices with
stacked resolution
views, not doing
time-series 3D

2D methods

3D methods

DCHNN, GoogLeNet, AlexNet

Mask R-CNN, ResNet, FPN

DCNN

U-Net

ResNet, XBG Boost, Random Forest
CNN, Clustering, Fast-marching method
CNN

Genetic encoding, CNN

CNN, ADABOOST

CNN

VGG-16, FCN

U-Net, VGG-Net

Generative model

CNN

YOLOv5

MobileNetv2, U-Net

U-Net

V-Net

CNN

ResMNet

DenseNet, U-Net

U-Net

Active Contour Model, CNN
iMRRN

UNETR

88.7%

54%

98.91%

96%

97.1%

95.65%

97.83%

2D and 3D methods both give similar accuracy scores,
and choosing the type of model depends on the
dataset, methodolgy, and type of output.



SegChaNet: A Novel Model for
Lung Cancer Segmentation in C...

Accurate lung tumor identification is
crucial for radiation treatment planning.
Due to the low contrast of the lung tum...

Study Aim

Develop two deep learning models for early lung cancer detection:
TransSegNet for CT scan segmentation

MinClassNet for histopathological image classification

Datasets Used

ACDC-LungHP for segmentation

Public histopathology dataset for classification

Models

TransSegNet: Transformer-based segmentation (44 patches, 4 blocks)
MinClassNet: Lightweight 7-layer CNN for classification

Features

Automatically learned (no handcrafted features)

Metrics

TransSegNet:

Accuracy: 99.62%, Mean loU: 49.8

MinClassNet:

Accuracy: 98.39%

Key Findings

Transformers improved segmentation accuracy

CNN improved classification over older methods

Both models show strong potential for clinical lung cancer detection

https://indjst.org/articles/a-novel-3d-
multi-layer-convolutional-neural-
networks-for-lung-cancer-
segmentation-in-ct-images

Aim of the Study

Develop a 3D Multi-Layer CNN combined with K-Means pre-segmentation for
accurate and fast lung tumor segmentation in CT scans.
Dataset

TCIA (3D CT scans)

Manual + K-Means-enhanced labeling

Model Overview

3D-MLCNN with encoder-decoder architectures
Features Extracted

3D texture, intensity, edge, and depth-aware features
Feature fusion at root node for better spatial context
Performance Metrics

Accuracy: 98%

Dice: 0.921

loU: 0.842

Sensitivity: 0.894


https://indjst.org/articles/a-novel-3d-multi-layer-convolutional-neural-networks-for-lung-cancer-segmentation-in-ct-images
https://indjst.org/articles/a-novel-3d-multi-layer-convolutional-neural-networks-for-lung-cancer-segmentation-in-ct-images
https://indjst.org/articles/a-novel-3d-multi-layer-convolutional-neural-networks-for-lung-cancer-segmentation-in-ct-images
https://indjst.org/articles/a-novel-3d-multi-layer-convolutional-neural-networks-for-lung-cancer-segmentation-in-ct-images

Identifying Lung Cancer Using Image Processing h_ttps://WWW.SCiencedirect.CO Mm/Scli
Techniques” by Disha Sharma & Gagandeep Jindal ence/article/abs/pii/SOOlO4825173
Deveton a ot 00926?via%3Dihub

Develop a rule-based CAD system for early lung cancer detection from
CT scans by segmenting lungs, detecting nodules, and classifying them
as benign or malignant based on handcrafted features.

Dataset

NIH/NCI LIDC (1,000 CT images)

Aim of the Study
Compare deep learning models (CNN, DBN, SDAE) vs traditional CADx systems with
handcrafted features for lung cancer diagnosis using CT images.

. _ Dataset Used
Publlc,. standardized, DICOM format LIDC-IDRI
Techniques Used Models Used
CAD CNN (best performance)
Features Extracted DBN
Nodule size & shape SDAE
Contrast enhancement Traditional CADx with handcrafted features
Calcification patterns Features
3D location & geometry Deep models: Learned spatial, textural, and semantic features
Performance Metrics CADx: GLCM, wavelets, intensity, shape, calcification
AUC

Sensitivity: 90% CNN: 0.899 + 0.018

CADx: 0.848 = 0.026

Key Findings

CNN outperforms CADx in diagnostic accuracy

Deep models capture more meaningful, generalizable features
Highlights potential of DL to replace handcrafted systems in CAD


https://www.sciencedirect.com/science/article/abs/pii/S0010482517300926?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0010482517300926?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0010482517300926?via%3Dihub

Literature Gaps in Lung Cancer Detection

1. Bridging the Resolution Gap

Most deep learning models (e.g., basic U-Net,
TransSegNet, even 3D CNNs) operate on single-
resolution input, either 2D slices or 3D volumes of fixed
thickness.

This ignores valuable anatomical detail available in multi-
resolution CT scans (e.qg., RIDER dataset has 1.25mm,
2.5mm, 5mm).

3. Addressing Label Inconsistencies

In LIDC or ACDC datasets, inter-observer variability exists
— leading to noisy masks.

2. Avoiding 3D CNN Limitations

3D CNNs (e.g., 3D-MLCNN) are accurate but require
huge computational power, aligned volumetric data, and
lots of memory.

They also perform poorly on small datasets and struggle
with variable slice thickness.

4. VVolume-Inspired Accuracy with 2D-
Efficiency

2D CNNs alone (e.g., the GFG and MinClassNet models)
miss cross-slice consistency (nodules appearing in
several adjacent slices).



Our Novel Approach

Multi-Resolution
Stacking

We stack multi-resolution
slices (thin + thick) into a 3-
channel input.

This allows the model to see
both fine nodule edges (from
thin slices) and broader
anatomical context (from

thicker slices).

Enables resolution-aware
learning without needing 3D
convolutions.

2D CNN with Stacked
Channels

We use a 2D CNN with
stacked channels, which:

Works with unaligned or
semi-aligned data.

Requires less GPU memory.

Trains faster and is easier to
debug and visualize.

Consistent
Annotations

We only use paired test-
retest scans with consistent
radiologist annotations
(RIDER dataset).

This minimizes label noise
and gives us stable
segmentation ground truth.

Pseudo-3D Awareness

Our stacked slices are from
the same anatomical location

at different resolutions.

This simulates a pseudo-3D
awareness using 2D models
— improving boundary
prediction and minimizing
misclassification of edge
slices.



Dataset - RIDER Lung CT

FileName PatientiD Modality StudyDate StudyTime Manufacturer SliceThickness PixelSpacing ImageOrientationPatient ImagePositionPatient
1-1.dcm RIDER-3160137230 SEG 20070310 120351 pydicom-seg

1-128.dcm | RIDER-3160137230 CT 20070310 120351 GE MEDICAL SYSTEMS 1.25 [0.824219, 0.824219] [1,0,0,0, 1, 0] [-214.1000086, -171, -138.75]
1-198.dcm | RIDER-3160137230 CT 20070310 120351 GE MEDICAL SYSTEMS 1.25 [0.824219, 0.824219] [1,0,0,0, 1, 0] [-214.100006, -171, -226.25]
1-193.dcm | RIDER-3160137230 CT 20070310 120351 GE MEDICAL SYSTEMS 1.25 [0.824219, 0.824219] [1,0,0,0, 1, 0] [-214.1000086, -171, -220]
1-007.dcm | RIDER-3160137230 CT 20070310 120351 GE MEDICAL SYSTEMS 1.25 [0.824219, 0.824219] [1,0,0,0, 1, 0] [-214.1000086, -171, 12.5]
1-086.dcm | RIDER-3160137230 CT 20070310 120351 GE MEDICAL SYSTEMS 1.25 [0.824219, 0.824219] [1,0,0,0, 1, 0] [-214.100006, -171, -86.25]
1-181.dcm | RIDER-3160137230 CT 20070310 120351 GE MEDICAL SYSTEMS 1.25 [0.824219, 0.824219] [1,0,0,0, 1, 0] [-214.100006, -171, -205]
1-142.dcm | RIDER-3160137230 CT 20070310 120351 GE MEDICAL SYSTEMS 1.25 [0.824219, 0.824219] [1,0,0,0, 1, 0] [-214.1000086, -171, -156.25]
1-129.dcm | RIDER-3160137230 CT 20070310 120351 GE MEDICAL SYSTEMS 1.25 [0.824219, 0.824219] [1,0,0,0, 1, 0] [-214.100006, -171, -140]
1-201.dcm | RIDER-3160137230 CT 20070310 120351 GE MEDICAL SYSTEMS 1.25 [0.824219, 0.824219] [1,0,0,0, 1, 0] [-214.1000086, -171, -230]
1-154.dcm | RIDER-3160137230 CT 20070310 120351 GE MEDICAL SYSTEMS 1.25 [0.824219, 0.824219] [1,0,0,0, 1, 0] [-214.1000086, -171, -171.25]

Contains scans from 31 patients with non-small cell lung cancer (NSCLC).
Has image position coordinates for each scan.



Why RIDER was chosen

Variability Analysis

Allows analysis of variability between

@

SCans.

Expert-Annotated Ground Truth

Tumor boundaries were manually
delineated by oncologists, which
supports supervised learning.

©

Test-Retest Scan Protocol

Each patient has paired test-retest CT
scans taken under the same conditions
within a short interval which enables
analysis of feature stability and
reproducibility.

Multi-Resolution

Enables use of stacking from different
resolutions for super-resolution imaging.



Preprocessing steps

(0

__()

<[>

# STEP 1: Load Metadata

1. Load and Clean the Metadata df = pd.read_csv(csv_path)
df = df.dropna(subset=|

"X (in pixel)", "x (in pixel).1",

"y(in pixel)", "y(in pixel).1",
"z (imagenumberl)", "z (imagenumber2)"

2. Build Tumor Map with Inverted Y-Axis

Purpose: Convert the bounding box annotations to (x, y) center coordinates for each slice < a2 LG HUEE LR U0 sliERss] s
tumor_map = defaultdict(dict)
for _, row in df.iterrows():

rider_id = row["RIDER-ID"]

3. Helper Functions
x = int(round((row["x (in pixel)"] + row["x (in pixel).1"]) / 2))

extract_slice index(filename)

e Extracts slice number from DICOM filename like slice—0123.dcm
# STEP 3: Helper functions

create_ellipse_mask(shape, center, axes) deijexirostislicel dexttilenome
try:

return int(filename.split('-")[-1].replace('.dcm', '').lstrip("@") or "@")
except:

» Creates a filled elliptical mask at given center (X, y) with specified radii (ellipse_axes = (12, 16))

return None

extract_rider_id(path)

o Extracts the RIDER—xxxxxxxxxx patient ID from filepath using regex

. # STEP 4: Generate one mask per .dcm file wlith correct y-inversion
4. Walk Through DICOM Files and Create Masks , b - /
os.makedirs(output_mask_dir, exist_ok=True)

Check if the current slice has a tumor annotation from tumor_map

- : for b dir in b dirs:
o Ifyes: draw afilled ellipse mask at the tumor center i e ek

for root, , files in os.walk(base dir):
» If no: create an empty (black) mask for file in files:

if not file.endswith(".dcm"):

5. Convert dicom to png continue




Preprocessing Pipeline

Convert DICOM files
Convert DICOM files to PNG

'_bl

< Align Slices
— Align slices based on anatomical landmarks.
N Apply noise reduction
Apply noise reduction using filters.
< Enhance contrast

Enhance contrast through histogram equalization.



Stacked vs individual images

Input Grid Output Image
Pre Stacking Stacked Image



Feature Extraction

From Input Images (CT Slices)

Modality: DICOM CT slices, 512x512 (grayscale)
Preprocessing:

¢« HU normalization via RescaleSlope & Intercept
e CLAHE for contrast enhancement

e Percentile clipping (1st-99th)

e Resized to 256x256 and scaled to [0,1]

Stacking via MIP:

e Combines multiple slice thicknesses (1.25mm, 2.5mm,

5mm)

e Extracts a Maximum Intensity Projection (MIP) for better
tumor visibility

e Forms multi-resolution 3-channel input

MIP image

From Ground Truth Masks
Elliptical Pseudo-Masks:

e Derived from metadata tumor coordinates (X, vy, z)

o Fixed axes (12,16), simulating gross tumor volume

From Augmentation

Transforms:

e Flips, rotations (90°/180°/270°), brightness jitter
Purpose:

e Simulates real-world variance, improves generalization

From Model Architecture

e Encoder: Extracts edge, texture, and intensity-based
features

o Decoder: Learns shape, boundary, and spatial context

o Skip Connections: Fuse local & global features for better
segmentation

Masking from tumor
coordinates



Methodology



Methodology

Dataset Used: Rider Lung CT scans in DICOM format
Preprocessing:
o Convert DICOM files: Convert DICOM to PNG format.
o Align slices: Based on anatomical lung landmarks.
o Noise reduction: Using denoising filters.
o Enhance contrast: Histogram equalization.
Super-Resolution Stacking:
o Utilized varying slice thicknesses (e.g., Tmm, 2.5mm, Smm).
o Resampled and aligned them to a common resolution.
o Stacked to form richer 3D volumetric data per patient.
Segmentation Pipeline:
o Objective: Ildentify and localize lung nodules.
o Binary masks: 1 = tumor, O = background.
o Used segmentation as both preprocessing (to focus regions) and final output (tumor detection).
Model Architecture:
o Custom U-Net and Pretrained U-Net (ResNet34) from segmentation_models library.
o Encoder-decoder structure with skip connections for spatial precision.
Loss Function:
o Combined Dice Loss and Focal Loss to handle class imbalance and improve boundary accuracy.
Training Strategy:
o Data augmentation: rotations, flips, intensity shifts to boost generalization.
o Optimizer: Adam, LR scheduler, and early stopping to avoid overfitting.
Evaluation Metrics:
o Dice Coefficient and loU used to measure overlap between predicted masks and ground truth.



Model architecture

2 Segmentation models used:
1)Pretrained UNet with ResNet34 Encoder
Library Used: segmentation_models (sm)
e Input shape: (256, 256, 3)
e OQutput: Single-channel mask (classes=1) with sigmoid activation.

2)Custom UNet from scratch
Input shape: (256, 256, 1) (grayscale)
e Downsampling Path (Encoder):
o 4 convolutional blocks with increasing filters (64 - 128 - 256 - 512)
o Each block = 2 Conv2D + Dropout
o MaxPooling after each block
e Bottleneck: 1024 filters with 2 Conv2D + Dropout
e Upsampling Path (Decoder):
o UpSampling + Concatenate (skip connection)
o Conv2D blocks with decreasing filters (512 - 256 - ...)
e OQutput Layer: Conv2D(1, kernel_size=1, activation="'sigmoid")



Data Pipeline

Step 1: Collect DICOM images and corresponding segmentation masks (.png)
Step 2: Pair each image with its correct mask using filename matching
Step 3: Preprocess DICOM images

o Apply rescale slope/intercept

o Normalize pixel intensity

o Apply CLAHE (for contrast enhancement)

o Clip intensity range and resize to 256x256
Step 4: Preprocess masks

o Resize to 256x256

o Binarize (convert to 0/1)
Step 5: Apply data augmentations

o Horizontal flip

o Random rotation (90°, 180°, 270°)

o Random brightness adjustment
Step 6: Normalize images to [0, 1] and convert to 3 channels if needed
Step 7: Feed batches into a segmentation model (UNet / Pretrained UNet)
Step 8: Train model using combined Dice + Focal loss
Step 9: Evaluate using Dice Coefficient and loU

-

A

Dataset Used

» Lung CT scans
(cancerous &

E non-cancer{us)

» Ground truth

segmentationmasks
¥,

-

N
Preprocessing

+ CLAHF-appliced for
enhancing nodule
visibility

» Percentile clipping
[1st—99th)

« Normalized scans [0,1]

O

« Resized slices and

7

masks to 256 x36

Model Architecture

+ Custom U-Net and
Pretrained U-Net

S

(ReeNet34)

Loss Function

* Combined Dice. Lcoss
and Focal Loss

n

A

Super-Resolution Stacking
(SRS)

« Utilized varving slice
thisknesses (e.g. Tmm,
2.5 mm, 5mm)

+ Resampled and aligned
them to a common
resolution

-

1

Vs

Segmentation Pipeline

» Objective; Identify, annd
localize lung nodules
» Binary masks
1=aumor, 4— background
» Used segmentation as
both preprocesssing
and final output

L

e

Evaluation Metrics

+ Dice Coefficient
« loU

Ve

Training Strategy
Data augmentation

rotations, fiips, intensity
(& shifts

« Obtimizer: Adam, LR
scheduler; early stopping




Training Setup

Model: UNet

Input Image Size: 256 x 256 (grayscale or 3-channel after conversion)
Loss Function:

» Combination of Dice Loss + Focal Loss

» Helps handle class imbalance and segmentation overlap
Optimizer:

» Adam optimizer

» Learning rate: 0.0001

Metrics:

» Dice Coefficient (overlap measure)

» loU (Intersection over Union)

Batch Size: 4

Epochs: 50
Augmentation:

» Horizontal flips

» Random rotations (by 90°, 180°, 270°)

» Random brightness variations
Training Pipeline:

» Custom MedicallmageDataset with paired image-mask loading
» DatalLoader for efficient batching and shuffling

» Model trained using .train() mode with validation loop



Layer (type) Output Shape Param # | Connected to
input_layer_1 (None, 256, 256, 1) 0| -

(InputLayer)

conv2d_15 (Conv2D) (None, 256, 256, 64) 640 | input_layer_1[0][@]
conv2d_16 (Conv2D) (None, 256, 256, 64) 36,928 | conv2d_15(0][@]
max_pooling2d_3 (None, 128, 128, 64) @ | conv2d_16[0][0]
(MaxPooling2D)

conv2d_17 (Conv2D) (None, 128, 128, 128) 73,856 | max_pooling2d_3[0] [0]
conv2d_18 (Conv2D) (None, 128, 128, 128) 147,584 | conv2d_17[0] [@]
max_pooling2d_4 (None, 64, 64, 128) @ | conv2d_18[0][0]
(MaxPooling2D)

conv2d_19 (Conv2D) (None, 64, 64, 256) 295,168 | max_pooling2d_4[0] [0]
conv2d_20 (Conv2D) (None, 64, 64, 256) 590,080 | conv2d_19[0] [@]
max_pooling2d_5 (None, 32, 32, 256) @ | conv2d_20[0][0]
(MaxPooling2D)

conv2d_21 (Conv2D) (None, 32, 32, 512) 1,180,160 | max_pooling2d_5[0] [0]
conv2d_22 (Conv2D) (None, 32, 32, 512) 2,359,808 | conv2d_21(0][@]
up_sampling2d_3 (None, 64, 64, 512) @ | conv2d_22[0][0]
(UpSampling2D)

concatenate_3 (None, 64, 64, 768) @ | up_sampling2d_3[0][0],
(Concatenate) conv2d_20[0] [0]
conv2d_23 (Conv2D) (None, 64, 64, 256) 1,769,728 concatenate_3[0] [0]
conv2d_24 (Conv2D) (None, 64, 64, 256) 590,080 | conv2d_23[0][@]
up_sampling2d_4 (None, 128, 128, 256) ® | conv2d_24[0][0]
(UpSampling2D)

concatenate_4 (None, 128, 128, 384) ® | up_sampling2d_4[0][0],
(Concatenate) conv2d_18[0] [@]
conv2d_25 (Conv2D) (None, 128, 128, 128) 442,496 | concatenate_4[0][@]
conv2d_26 (Conv2D) (None, 128, 128, 128) 147,584 | conv2d_25[0] [@]
up_sampling2d_5 (None, 256, 256, 128) @ | conv2d_26[0][0]
(UpSampling2D)

concatenate_5 (None, 256, 256, 192) ® | up_sampling2d_5[0@][0],
(Concatenate) conv2d_16[0] [@]
conv2d_27 (Conv2D) (None, 256, 256, 64) 110,656 | concatenate_5([0][@]
conv2d_28 (Conv2D) (None, 256, 256, 64) 36,928 | conv2d_27(0][@]
conv2d_29 (Conv2D) (None, 256, 256, 1) 65 | conv2d_28([0][0]

Total params: 7,781,761 (29.69 MB)
Trainable params: 7,781,761 (29.69 MB)




Evaluation Metrics

Loss Function- Dice Coefficient-

The loss function quantifies how far the model’s The Dice Coefficient measures the similarity
predictions are from the true tumor masks. We used a between the predicted mask and the ground truth,
combination of Dice Loss and Focal Loss to balance ranging from O (no overlap) to 1 (perfect overlap).
overlap accuracy and handle difficult tumor regions. It is especially effective for handling class
Minimizing this loss improves overall segmentation imbalance in tumor segmentation. Higher Dice
quality. scores indicate better model performance.

Intersection over Union (loU) Threshold vs Dice Curve
loU calculates the ratio of the overlap area This metric helps determine the best
to the combined area of prediction and probability threshold to convert model outputs
ground truth masks. It provides a stricter into binary masks. By evaluating Dice scores
evaluation than Dice, assessing how well the at different thresholds, we identify the cutoff
model outlines the tumor boundaries. loU that maximizes segmentation accuracy. It
values closer to 1 signify more accurate ensures optimal post-processing of

segmentations. predictions.



Results

o

dice_coef

— rain
— val

LB

0.6 1

dice_coefl

0.2 4

0.0 4

20

Epoch

60

Loss over Epochs:
Training loss decreases steadily, showing
the model is learning on training data.
However, validation loss remains high and

fluctuates, indicating poor generalization
and possible divergence.

Dice Coefficient over Epochs:
Training Dice increases well, reaching
close to 0.9, but validation Dice stays

near zero throughout, meaning the
model fails to segment correctly on
validation data.



Results

ou coef

iou_coef
— train
— val
0.8 -
0.6 -
0.4
0.2
004 "
0 10 20 30 40 50 60

Epoch

loU over Epochs:
Similar pattern—training loU improves
significantly, but validation loU remains
near zero, confirming no meaningful
overlap on validation masks.



Clinical & Technological Impact

Efficiency Boost
Reduces false positives, streamlines
diagnostics
Early Diagnosis Automated Triage
Accurate segmentation enables quicker Supports efficient patient prioritization
disease detection in hospitals



Loss Instability Cross-Institutional Data

Challenges Variability if we scale up

Standard loss functions ) failed to .
_ CT scan protocols, resolutions, and
converge reliably on pseudo-masks. ,
No Ground Truth Masks scanner vendors vary across hospitals

Available We had to adopt a custom Dice + which may affect model

Focal loss function to balance generalization.

The dataset lacked expert-drawn .
precision and recall.

contours, so we had to create elliptical

pseudo-masks based on coordinate # —————————— Loss Functions
def dice_loss(y_true, y_pred):

midpoints — Introducing y_true_f = tf.keras.backend.flatten(y_true)

approximation errors. y_pred_f = tf.keras.backend.flatten(y_pred)
intersection = tf.keras.backend.sum(y_true_f x y_pred_f)

return 1 - (2. % intersection + le-7) / (tf.keras.backend.sum

def focal_loss(gamma=2., alpha=0.25):

create_ellipse_mask(shape, center, axes): def focal(y true, y pred}:

K = np. hape, dtype=np.uint8 .
nas '“jzeros?;ape YPESNpsUZRES) _ y_pred = tf.keras.backend.clip(y_pred, tf.keras.backend.e|
center = (np.clip(center[@], @, shape[l] - 1), np.clip(center[1], @, shape[@] - 1))
cv2.ellipse(mask, center=center, axes=axes, angle=0, startAngle=0, endAngle=360, color=255

return mask weight = alpha * tf.pow(1l - y_pred, gamma) x y_true + (1 -

cross_entropy = -y_true x tf.math.log(y_pred) - (1 - y_tri

return tf.reduce_mean(weight * cross_entropy)
return focal

def combined_loss(y_true, y_pred):
return dice_loss(y_true, y_pred) + focal_loss()(y_true, y_pre
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